Intermediate Mass Higgs 160 - 180 GeV

- \circ e⁺e⁻ -> ZH M_{Higgs} ~ 160 -180 GeV/c²
 - ⇒ Higgs ->WW dominates
 - ⇒ bb and ZZ about same order (a few percent)
 - ⇒ Above 200, ZZ ~ 10%
- WANT TO MEASURE:
 - \Rightarrow BF(H->WW), BF(H->ZZ), BF(H->bb)
 - $\rightarrow \Gamma(H->WW), \Gamma(H->ZZ), \Gamma(H->bb)$
 - » To get couplings
 - » Requires Γ_{TOT} !

OR

- $\Rightarrow \Gamma(H->WW)/\Gamma(H->ZZ)$
 - » Which doesn't require Γ_{TOT} , gives ratio of couplings
- So Key piece is $\sigma(e^+e^- -> ZH)$

Progress?

- Very little
- Need standards on:
 - ⇒ How to pick jets
 - » For use in W, Z, b identification
 - » Jet-Jet Mass distributions
 - ⇒ W identification
 - » Lepton + Missing Energy
 - » Jet-Jet Mass
 - ⇒ Z identification
 - » Dilepton mass
 - » Jet-Jet Mass
- SIMDET + Fortran?
- o JAS?
- 4 vectors + smearing?
- Background generation/simulation

Plan for this group

- 160 GeV Higgs at \sqrt{s} = 500 GeV
- \circ $\sigma(ZH)$ precision
- BF(H—WW) precision

- o Time scale?
 - ⇒ September? Earlier will need more contributions
- Other masses, \sqrt{s} to follow